Author Affiliations
Abstract
1 National Innovation Institute of Defense Technology, Academy of Military Sciences PLA China, Beijing 100071, China
2 Beijing Institute for Advanced Study, National University of Defense Technology, Beijing 100000, China
3 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
4 College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China
5 Institute for Quantum Science and Technology, College of Science, National University of Defense Technology, Changsha 410073, China
Microcombs have enabled a host of cutting-edge applications from metrology to communications that have garnered significant attention in the last decade. Nevertheless, due to the thermal instability of the microresonator, additional control devices like auxiliary lasers are indispensable for single-soliton generation in some scenarios. Specifically, the increased system complexity would be too overwhelming for dual-microcomb generation. Here, we put forward a novel approach to mitigate the thermal instability and generate the dual-microcomb using a compact system. This process is akin to mode-division multiplexing, as the dual-microcombs are generated by pumping the dual-mode of a single Si3N4 microresonator with a continuous-wave laser. Both numerical simulations and experimental measurements indicate that this innovative technique could offer a straightforward way to enlarge the soliton existence range, allowing entry into the multistability regime and triggering another microcomb alongside the main soliton pulse. This outcome not only shines new light on the interaction mechanism of microresonator modes but also provides an avenue for the development of dual-microcomb-based ranging and low phase noise microwave generation.
Photonics Research
2024, 12(1): 163
Runlin Miao 1,2,3Chenxi Zhang 1,2,3Xin Zheng 4Xiang’ai Cheng 1,2,3[ ... ]Tian Jiang 1,5,7,*
Author Affiliations
Abstract
1 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
2 State Key Laboratory of Pulsed Power Laser Technology, Changsha 410073, China
3 Hunan Provincial Key Laboratory of High Energy Laser Technology, Changsha 410073, China
4 Defense Innovation Institute, Academy of Military Sciences PLA China, Beijing 100071, China
5 Beijing Institute for Advanced Study, National University of Defense Technology, Beijing 100000, China
6 e-mail: cqyinke@126.com
7 e-mail: tjiang@nudt.edu.cn
Dissipative Kerr solitons (DKSs) with mode-locked pulse trains in high-Q optical microresonators possess low-noise and broadband parallelized comb lines, having already found plentiful cutting-edge applications. However, thermal bistability and thermal noise caused by the high microresonator power and large temperature exchange between microresonator and the environment would prevent soliton microcomb formation and deteriorate the phase and frequency noise. Here, a novel method that combines rapid frequency sweep with optical sideband thermal compensation is presented, providing a simple and reliable way to get into the single-soliton state. Meanwhile, it is shown that the phase and frequency noises of the generated soliton are greatly reduced. Moreover, by closing the locking loop, an in-loop repetition rate fractional instability of 5.5×10-15 at 1 s integration time and a triangular linear repetition rate sweep with 2.5 MHz could be realized. This demonstration provides a means for the generation, locking, and tuning of a soliton microcomb, paving the way for the application of single-soliton microcombs in low-phase-noise microwave generation and laser ranging.
Photonics Research
2022, 10(8): 1859
Author Affiliations
Abstract
1 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
2 Defense Innovation Institute, Academy of Military Sciences PLA China, Beijing 100071, China
3 Beijing Institute for Advanced Study, National University of Defense Technology, Beijing 100020, China
We present a theoretical analysis of a novel multi-channel light amplification photonic system on chip, where the nonlinear Raman amplification phenomenon in the silicon (Si) wire waveguide is considered. Particularly, a compact and temperature insensitive Mach–Zehnder interferometer filter working as demultiplexer is also exploited, allowing for the whole Si photonic system to be free from thermal interference. The propagation of the multi-channel pump and Stokes lights is described by a rigorous theoretical model that incorporates all relevant linear and nonlinear optical effects, including the intrinsic waveguide optical losses, first- and second-order frequency dispersion, self-phase and cross-phase modulation, phase shift and two-photon absorption, free-carriers dynamics, as well as the inter-pulse Raman interaction. Notably, to prevent excessive drift of the transmission window of the demultiplexer caused by ambient temperature variations and high thermo-optical coefficient of Si, an asymmetric waveguide width is adopted in the upper and lower arms of each Mach–Zehnder interferometer lattice cell. A Chebyshev half-band filter is utilized to achieve a flat pass-band transmission, achieving a temperature sensitivity of <1.4 pm/K and over 100 K temperature span. This all-Si amplifier shows a thermally robust behavior, which is desired by future Si-on-insulator (SOI) applications.
Chinese Optics Letters
2022, 20(8): 081301
Tian Jiang 1,*†Ke Yin 2†Cong Wang 3†Jie You 2[ ... ]Han Zhang 3,4
Author Affiliations
Abstract
1 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
2 National Innovation Institute of Defense Technology, Academy of Military Sciences China, Beijing 100071, China
3 Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
4 e-mail: hzhang@szu.edu.cn
The year 2019 marks the 10th anniversary of the first report of ultrafast fiber laser mode-locked by graphene. This result has had an important impact on ultrafast laser optics and continues to offer new horizons. Herein, we mainly review the linear and nonlinear photonic properties of two-dimensional (2D) materials, as well as their nonlinear applications in efficient passive mode-locking devices and ultrafast fiber lasers. Initial works and significant progress in this field, as well as new insights and challenges of 2D materials for ultrafast fiber lasers, are reviewed and analyzed.
Photonics Research
2020, 8(1): 01000078
Author Affiliations
Abstract
1 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
2 National Innovation Institute of Defense Technology, Academy of Military Sciences PLA China, Beijing 100071, China
3 State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, Changsha 410073, China
In this work, a soliton mode-locked erbium-doped fiber laser (EDFL) with a high-quality molecular beam epitaxy (MBE)-grown topological insulator (TI) Bi2Se3 saturable absorber (SA) is reported. To fabricate the SA device, a 16-layer Bi2Se3 film was grown successfully on a 100 μm thick SiO2 substrate and sandwiched directly between two fiber ferrules. The TI-SA had a saturable absorption of 1.12% and a saturable influence of 160 MW/cm2. After inserting the TI-SA into the unidirectional ring-cavity EDFL, self-starting mode-locked soliton pulse trains were obtained at a fundamental repetition rate of 19.352 MHz. The output central wavelength, pulse energy, pulse duration, and signal to noise ratio of the radio frequency spectrum were 1530 nm,18.5 pJ, 1.08 ps, and 60 dBm, respectively. These results demonstrate that the MBE technique could provide a controllable and repeatable method for the fabrication of identical high-quality TI-SAs, which is critically important for ultra-fast pulse generation.
140.4050 Mode-locked lasers 160.4236 Nanomaterials 
Chinese Optics Letters
2019, 17(7): 071403
Author Affiliations
Abstract
1 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
2 State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, Changsha 410073, China
3 Interdisciplinary Center of Quantum Information, National University of Defense Technology, Changsha 410073, China
4 National Institute of Defense Technology Innovation, Academy of Military Sciences PLA China, Beijing 100010, China
Broadband transient reflectivity traces were measured for Bi2Se3 thin films with various substrates via a 400 nm pump–white-light-probe setup. We have verified the existence of a second Dirac surface state in Bi2Se3 and qualitatively located it by properly analyzing the traces acquired at different probe wavelengths. Referring to the band structure of Bi2Se3, the relaxation mechanisms for photo-excited electrons with different energies are also revealed and studied. Our results show a second rise of the transient reflection signal at the time scale of several picoseconds. The types of substrate can also significantly affect the dynamics of the rising signal. This phenomenon is attributed to the effect of lattice heating and coherent phonon processes. The mechanism study in this work will benefit the fabrication of high-performance photonic devices based on topological insulators.
160.4236 Nanomaterials 300.6500 Spectroscopy, time-resolved 
Chinese Optics Letters
2019, 17(2): 020005

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!